A Recursive Method of Identification of Hammerstein Model Based on Least Squares Support Vector Machines
نویسندگان
چکیده
In the domain of industrial process modeling and control, Hammerstein model has been used widely to describe a class of nonlinear systems. Goethals et al. (2005) proposed a method based on Least Squares Support Vector Machines (LSSVM) to identify the input-output relationship of the Hammerstein model. Unfortunately, as the data points grow, this kernel learning approach costs much time correspondingly. Besides, Goethals’s technique is not suitable for the on-line identification. To this end, a recursive nonlinear identification method is proposed in this paper. The basic idea is to get the recursive form of the parts of the high-dimensional matrix arisen from the optimization derivation, and get the estimation with the trick of sub-inverse matrix. With this new LSSVM approach, the Hammerstein model can be obtained recursively and much quickly, which is crucial to industrial applications that require online estimation and prediction. The simulation illustrates the validity and feasibility of the developed online identification method.
منابع مشابه
Identification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines
In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...
متن کاملIdentification of MIMO Hammerstein models using least squares support vector machines
This paper studies a method for the identification of Hammerstein models based on Least Squares Support Vector Machines (LS-SVMs). The technique allows for the determination of the memoryless static nonlinearity as well as the estimation of the model parameters of the dynamic ARX part. The SISO as well as the MIMO identification cases are elaborated. The technique can lead to significant improv...
متن کاملNarx Identification of Hammerstein Models Using Least Squares Support Vector Machines
In this paper we propose a new technique for the identification of NARX Hammerstein systems. The new technique is based on the theory of Least Squares Support Vector Machines function-approximation and allows to determine the memoryless static nonlinearity as well as the linear model parameters. As the technique is non-parametric by nature, no assumptions about the static nonlinearity need to b...
متن کاملModeling and Identification of Heat Exchanger Process Using Least Squares Support Vector Machines
In this paper, Hammerstein model and Nonlinear AutoRegressive with eXogeneous inputs (NARX) model are used to represent tubular heat exchanger. Both models have been identified using least squares support vector machines based algorithms. Both algorithms were able to model the heat exchanger system without requiring any apriori assumptions regarding its structure. The results indicate that the ...
متن کاملNumerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials
The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...
متن کامل